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1 Introduction

I will talk on the construction of N. Mohan Kumar in
his paper entitled ”Stably free modules” ([MK1]). This
paper is widely known for the examples of stably free
projective modules that are not free.

In fact, such examples of stably free projective mod-
ules in this paper is (only) an application of the main
construction in this paper.

We will discuss two further applications and /or aspects
of the main construction.

This 1s part of an on going work with S. M. Bhat-
wadekar and Mrinal Kanti Das.



Part of the goal of this talk is to produce a smooth
three fold X = Spec(A) and a projective A—module
P with rank(P) = 3, such that [P] — [4%] # 0 in
the Grothendieck group Ky(A) and all the Chern classes
C"(P)=0forall r > 1.

In contrast, recall the theorem of Mohan Kumar and
Murthy [MKM]:

Theorem 1.1 ([MKM]) Let A be a smooth affine ring
over an algebraically closed field and dim(A) = 3. Sup-
pose P is a projective A—module with any rank(P) =
r > 1. Then

[P —[A]=0<= C"P)=0 for all k>1.

In other words, a projective A—module is stably free if
and only if all the Chern classes of P are zero.



2 Mohan Kumar Varieties

The following is the constructions of Mohan Kumar ([MK1]).

Construction 2.1 [MK1, Mohan Kumar| Let k be a
field and p be a prime number. Fix a polynomial f(zx) of
degree p over k such that f(0) = a € k*. This polynomial
f(x) will be called the seed polynomial. Let

r—1 _ pr—1
p—1
1. Let F(xo,l’l) = F1($0,$1) = 513]1)]((330/,%1)

t,=1+4p+--+p

2. Inductively define

F, = F(Fn_l(l'o, ce ,.il?n_l), at”—lxﬁn_l).

3. We will work with (seed) polynomials f(x) so that
F,, is irreducible (for appropriate n).



4. Let S, = V(F,) C P} denotes the closed subset of
P? defined by F), = 0. That means

SnzProj( [gjo’xl’?’ o ]>

These varieties .S,, will be called a Mohan Kumar
(projective) varieties. Note that these are sin-
gular varieties.

5. Let X, =P} \ S,. Write X,, = Spec(A,,). Then
An — k[x()a L1y L2y - 7xn](Fn)7

the homogneous localization. These varieties X, will
be called Mohan Kumar (affine) varieties. Note
that these are non-singular affine varieties.

6. Often, out seed polynomial is f(x) = 2 + a where
k = ko(a) and a is trnacendental over a field k.



Among other things, Mohan Kumar ([MK1]) did the
following computations regarding the Chow groups.

Theorem 2.2 ([MK1, Mohan Kumar]) Let p be a prime
number and let rest of the notations be as above (2.1).
Then,

1. The Chow group C H*(X,,) of codimension one cycles
is given by
CHY(X,)=Z/(p").

Proof. Note degree(F),) = p". The rest of the proof
follows from the exact sequence

CH(S,) =72 — CH'P})=7Z — CH"(X3) — 0.
2. Also, the Chow group CH"(X,,) of codimension n
cycles (i.e. zero cycles) is given by
CH"(X,)=1Z/(p).
Proof. This follows from the exact sequence
CH"'(S,) - CH"(P}) =Z — CH"(X,,) — 0

and the fact that image(CH"1(S,)) = pZ. This
follows by observing that degree of any closed point
© € S, is divisible by p and the closed point gy =
(F1,z9,%3,...,T,) € S, has degree p.
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3. Problems: The complete description of the total
Chow group C'H(X,,) is not known. Also the de-
scription of the Grothendieck group Ky(X,,) is not
known.



2.1 Computation of Grothendieck K —Groups

Our question is K —theoretic. So, we wish to gather in-
formation regarding K —groups.

Theorem 2.3 Let k = ky(a) where a is trnacendental
over a field kg and let f(z) = 2% + a be the seed poly-
nomial. (We consider Mohan Kumar varieties with
p = 2,n = 3.) Consider the exact sequence

Go(95)) - Ko(P?) — Ko(A;3) — 0.

We have
i(Go(S3)) C QKO(IP)?’).

Proof. We will write O = Ops. Recall

3
Ko(P?) = Z[T)/(T-1)* = ) " Zn" where n=[0(-1)].
k=0

Given any point z € 53, let P denote the ideal sheaf of
x. We will prove that

[g] c 2K, (P?).

We will write R = k[xq, z1, T2, x3].



Step I : The generic point in S3. Let x € S3 be
the generic point of S3. Consider the exact sequence

0o R-MBRLE g
F3

Looking at the shief, we have the exact sequence:

@)
0— O(-2%) -0 — — — 0.
()~ 0~ 2

Therefore,



Step II : Closed points in S3. Let x € S5 be a closed
point and m € P? be the corresponding homogenecous-
prime ideal. So, F3 € m and height(m) = 3. By theorem
2.2, item 2, we have cycle(%) = 2d € CH?(P?) for some
integer d. Now consider the maps

CH3(P?) D 3K (P,
Write
T = ideal — Sheaf — generated(F{, xo, x3).

Now
cycle (%) = cycle (g) in  CH?(PY).

Therefore, looking at the image under beta (Fulton [F,
page 285]), we have

[g] — [g] in FPKy(PY).

There is a surjective map
R(—2d) ® R(—1)* — (F¢, z9,23) — 0
that induces a surjective map
O(—2d) ® O(—1)* =T — 0.
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The Koszul complex gives (see 4.1):

[%] = (O(=2d) — 1)(O(=1) — 1)?

= (' - 1)(?7 1D2"E" (g — 1% — 1)? =0

because (n — 1)* = 0. Therefore,
o
[ ] [f] is in  2Ky(PY).

Step III: codim = 2: Let x € S3 be a codimension two
point. We think of = @ as a homogeneous prime ideal
of height 2 and let P = IdealSheaf(p).

Case x3 € p: Suppose x3 € p. Then o = (Fy, x3) The
surjective map

R(—4)® R(—1) — p
induces surjective map
O(—4)® O(—1) — P.

The Koszul complex gives (see 4.1):

A -a-ma-n

because (1 —n)* = 0.
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Case x3 ¢ @: Write y; = x; /3. f3 = F3(yo,y1,%2,1) €
©(z4)- By lemma 2.4,

ko, y1, yo
(f3)

It follows that @,y = (f3,h) for some h € klyo, y1, ya).

Let h = H(xg, z1, 29, 23) /2% for some homogneous H €

© so that H(xg, x1,x2,0) # 0. Note H is not a mul-

tiple of F, otherwise g,,) = (f3). This is impos-

sible. Therefore F, H is a regular sequence.
Let

1s an UFD.

I=(F5,H) and Z = IdealSheaf(I).

Let degree(H) = d. Then, F3, H induces a surjective
map

O(=8)®O(—d) —Z — 0.
The Koszul complex gives (see 4.1):
@,
— | =(1 = 8 1 — d
2| -a-ma-m
because (1 — n)* = 0. Therefore

O
2 divid —1.
wides [I]

“ 0

m

mo_d2

s

(1—n)*(1—n"
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We have the exact sequence

O—>E—>Q—>9—>O

7 I P
Also note the following:

1.
P ©
f = Sheaf(])

2. (I,x3) C /ann(%). Proof. We have @(,,) = I(5,).

S0, (%) (zg) = 0. Therefore x5(%) = 0 for some 7.

3. It is clear that py = (F5, x3) is the ONLY height-two
prime ideal that MAY contain (I, x3).

4. There are graded submodules

My=0C My C My € C My ="
with
Mi . k[x())xlax%xiﬂ
M i

where (I, x3) C ¢; are homogeneous primes for ¢ =

P; = Ideal Sheaf(p;).
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6. By looking at the corresponding sheafs we have

P o [0
[f] - [Shea f(T)] — [Sheaf(My)] = ; [5] .
7. Fori=1,...,Nif p; # po = (Fy, x3) then height(p;) >
3.

8. By downward induction or because p; = (Fs, x3) we
have

2 devides [%] for i=1,..., N.

Therefore
N

P O o
[f] —2[5@] divisible by 2.

1=1

9. The exact sequence

— — 0

NG
RSIRE

O—>§—>

e [9-[2)-)

This completes the proof of the theorem.

gives
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Lemma 2.4 Let ky be a field and k = ky(t) and ¢ is
trancendental over a field ky. Let yg, y1, y2 be variables
and A = k[yov Yi, yQ] and

f3 — F3(y07 Y1, Y2, 1) - (((y(2) + ty%)z + t3y;1)2 + t7'

Then A/(f3) is an UFD.
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2.2 The Examples

As promised in the introduction, we produce the following
example from the computaitons in Theorem 2.3.

Corollary 2.5 Suppose k = ko(a) where a is trnacen-
dental over a field kg and let f(x) = 2* + a be the seed
polynomial. Let X3 = Spec(As) be the Mohan Kumar
affine three fold. Let m be a k—rational maximal ideal
in As and =z = [%] c K()(Ag)

1. Then x # 0.

2. There is a projective module P of rank three such
that z = [P] — [A3] then C"(P) = 0 for all 7 > 1.

Proof. We have the exact sequence
Go(Fy = 0)) 5 Ko(P?) — Ky(X3) — 0

Let y € Ko(IP?) is given by a rational point. So ¢(y) = .
Write R = k[xg, x1, 22, 23]. Note that the exact sequence

R(—1)3 — (xo, 1, 22) gives y=(1— 77)3.

Since y is not a multiple of 2, we have x # 0.

Now we prove part two. Since x = [P] — [A3] is sup-
ported in codimention three, C'(z) = C*(x) = 0. Also,
by Riemann-Roch, C?*(x) = 2[eycle(x)] = 0 because
CH3(A3) =7Z/(2).
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By taking a common denominator, the following is a
consequence of the above example 2.5.

Corollary 2.6 There is an affine smooth algebra A over
C with dim(A) = 4 and a projective A—module P with
rank(P) = 3 such that [P] — [A%] # 0 and C"(P) = 0
for all » > 1.

This shows that the theorem of Mohan Kumar and
Murthy ([MKM]) is not valid for higher dimension.
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Following is a consequence of the UFD lemma.

Corollary 2.7 Let k = ky(a) where a is trnacenden-
tal over a field kg amd let f(z) = x® + a be the seed
polynomial. We have

CH*(X3) =7/(4).
S0, in this case, the total Chow group is given by
CHX3)=ZDZ/8)DZ/(4) ®Z/(12)
Proof. We have notations S,, = (F,, = 0) C P" and
X, =P\ S,.

Concider the diagram:

CHO(FQIO,I;;:O):Z Yo CHl(Sg)—>CH1(Sgﬂ(LL’37£O))—>O

I ! |

CH'(P?) =Z—" ~CH?(P®) =2 CH?(A?)

l : i

CHY(X,) CH?(X5) CH2(X5\ Xs) ——>0

Since (Figzggllﬁ]l) is a UFD, C’Hl(sg N (z3 #0)) = 0.
(Hence all of the third column is zero, but we do not
need it.) Now it follows that 1 is surjective. So, Let
¢ = (Fy, x3) denote the generator of CHY(Fy = 0,13 =
0). Then B1(CH(S3)) = B1(()Z = 47 So, CH?*(X3) =

7)(4).
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Theorem 2.8 Let k = ky(a) where a is trancendental
over a field kg. Let f(z) = 2° + a be the seed polyno-
mial. Let X3 be a Mohan Kumar affine three fold ovet k.
Then the Grothendieck gropup Ky(X3) is also completely
determined.
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3 Over the reals R

For our second application, we consider Mohan Kumar
varieties over the field of reals R. Our seed polynomial is

flz)=2*+1€ Rzl

Proposition 3.1 Let f(z) = 2° + 1 € R[z]. Let F} =
F(xg, z1) = 23 + 27. Define

Ey(x0, @1, ... @) = F(F_y,x,) = F2_, + 2%
Then F,, is irreducible in R[zg, 1, ..., x,].

All the computations of Mohan Kumar ([MK1]) goes
through. We rewrite theorem 2.2 in this context.

Theorem 3.2 Let f(z) = 2* + 1 € Rlz] be the seed
polynomial. Then,

1. The Mohan Kumar affine variety X,, = Spec(A,,) =
PE \ (F,, = 0) is a smooth real affine variety of di-
mension 7n.

2. We have CH(X,,) = Z/(2").
3. Also, CH"(X,,)) =7Z/(2).
4. Recall ([H]), the cannonical bundle
Kpn = N"Qpn = O(—n — 1).
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S0,
Kx

n

= —n—1 in PicX,)=CH'X,)="17/(2").
We compute the Euler class group of the Mohan Ku-

mar affine variety over reals as follows:

Theorem 3.3 Suppose L € Pic(X,) = Z/(2") is a
line bundle on X,,. If L +n + 1 is even then

E(X,,L)=7
and if L +n 4+ 1is odd then
E(X,, L) =7Z/(2)
Proof.

1. Notation: For any affine variety X = Spec(A)
over R, let

X(R) = Spec(S7'A) and R(X)=S"'A,

where S is the set all all f € A that does not vanish
at any real point.

2. Xp(R) = P"(R). So they have one connected com-
ponent, which is compact.

3. Pic(X,) =7/(2"). In fact,
Pic(X,(R)) = Z/(2).
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4. The cannonical bundle is K = —(n + 1).
5. We have the follwoing diagram:
00— EC<L) — E(Xn: L) e E(R(Xn)a L) —0

e e i

0—-K(C)—CH"(X,)— CH"(R(X,))—0

6. Since CH™(X,,) = Z/(2) and CH"(R(X,,)) = Z/(2)
we have

E<Xn7 L) - E(R(Xn)a L)
Therefore, it L +n + 1 is even then

E(X,,L)=ER(X,),L)=27Z
and if L +n + 1 is odd then
E(Xm L) - E(R(Xn)a L) = Z/(Q)'
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4 Appendix

4.1 Koszul Complex Lemma

Exercise 4.1 Let X be noetherian scheme and I be
local complete intersection sheaf of ideal of codimen-
sion r. Suppose Ly, ..., L, are line bundles and

Li®Llo® - B L, —1

be a surjective map. Then

2| =)L) Kl
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