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1 Introduction

I will talk on the construction of N. Mohan Kumar in

his paper entitled ”Stably free modules” ([MK1]). This

paper is widely known for the examples of stably free

projective modules that are not free.

In fact, such examples of stably free projective mod-

ules in this paper is (only) an application of the main

construction in this paper.

We will discuss two further applications and/or aspects

of the main construction.

This is part of an on going work with S. M. Bhat-

wadekar and Mrinal Kanti Das.
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Part of the goal of this talk is to produce a smooth

three fold X = Spec(A) and a projective A−module

P with rank(P ) = 3, such that [P ] − [A3] 6= 0 in

the Grothendieck group K0(A) and all the Chern classes

Cr(P ) = 0 for all r ≥ 1.

In contrast, recall the theorem of Mohan Kumar and

Murthy [MKM]:

Theorem 1.1 ([MKM]) Let A be a smooth affine ring

over an algebraically closed field and dim(A) = 3. Sup-

pose P is a projective A−module with any rank(P ) =

r ≥ 1. Then

[P ] − [Ar] = 0 ⇐⇒ Ck(P ) = 0 for all k ≥ 1.

In other words, a projective A−module is stably free if

and only if all the Chern classes of P are zero.
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2 Mohan Kumar Varieties

The following is the constructions of Mohan Kumar ([MK1]).

Construction 2.1 [MK1, Mohan Kumar] Let k be a

field and p be a prime number. Fix a polynomial f (x) of

degree p over k such that f (0) = a ∈ k∗. This polynomial

f (x) will be called the seed polynomial. Let

tr = 1 + p + · · · + pr−1 =
pr − 1

p− 1
.

1. Let F (x0, x1) = F1(x0, x1) = xp1f (x0/x1).

2. Inductively define

Fn = F (Fn−1(x0, . . . , xn−1), a
t
n−1xp

n−1

n ).

3. We will work with (seed) polynomials f (x) so that

Fn is irreducible (for appropriate n).
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4. Let Sn = V (Fn) ⊆ P
n
k denotes the closed subset of

P
n
k defined by Fn = 0. That means

Sn = Proj

(

k[x0, x1, x2, . . . , xn]

Fn

)

.

These varieties Sn will be called a Mohan Kumar

(projective) varieties. Note that these are sin-

gular varieties.

5. Let Xn = P
n
k \ Sn. Write Xn = Spec(An). Then

An = k[x0, x1, x2, . . . , xn](Fn),

the homogneous localization. These varieties Xn will

be called Mohan Kumar (affine) varieties. Note

that these are non-singular affine varieties.

6. Often, out seed polynomial is f (x) = xp + a where

k = k0(a) and a is trnacendental over a field k0.
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Among other things, Mohan Kumar ([MK1]) did the

following computations regarding the Chow groups.

Theorem 2.2 ([MK1, Mohan Kumar]) Let p be a prime

number and let rest of the notations be as above (2.1).

Then,

1. The Chow groupCH1(Xn) of codimension one cycles

is given by

CH1(Xn) = Z/(pn).

Proof. Note degree(Fn) = pn. The rest of the proof

follows from the exact sequence

CH0(Sn) = Z → CH1(Pnk) = Z → CHn(X3) → 0.

2. Also, the Chow group CHn(Xn) of codimension n

cycles (i.e. zero cycles) is given by

CHn(Xn) = Z/(p).

Proof. This follows from the exact sequence

CHn−1(Sn) → CHn(Pnk) = Z → CHn(Xn) → 0

and the fact that image(CHn−1(Sn)) = pZ. This

follows by observing that degree of any closed point

℘ ∈ Sn is divisible by p and the closed point ℘0 =

(F1, x2, x3, . . . , xn) ∈ Sn has degree p.
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3. Problems: The complete description of the total

Chow group CH(Xn) is not known. Also the de-

scription of the Grothendieck group K0(Xn) is not

known.
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2.1 Computation of Grothendieck K−Groups

Our question is K−theoretic. So, we wish to gather in-

formation regarding K−groups.

Theorem 2.3 Let k = k0(a) where a is trnacendental

over a field k0 and let f (x) = x2 + a be the seed poly-

nomial. (We consider Mohan Kumar varieties with

p = 2, n = 3.) Consider the exact sequence

G0(S3))
i
→ K0(P

3) → K0(A3) → 0.

We have

i(G0(S3)) ⊆ 2K0(P
3).

Proof. We will write O = OP3. Recall

K0(P
3) = Z[T ]/(T−1)4 =

3
∑

k=0

Zηk where η = [O(−1)].

Given any point x ∈ S3, let P denote the ideal sheaf of

x. We will prove that
[

O

P

]

∈ 2K0(P
3).

We will write R = k[x0, x1, x2, x3].
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Step I : The generic point in S3. Let x ∈ S3 be

the generic point of S3. Consider the exact sequence

0 → R(−23)
F3→ R →

R

F3
→ 0.

Looking at the shief, we have the exact sequence:

0 → O(−23) → O →
O

P
→ 0.

Therefore,
[

O

P

]

= [O]− [O(−23)] = (1− η23

)
mod 2
≡ (1− η)8

mod 2
≡ 0
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Step II : Closed points in S3. Let x ∈ S3 be a closed

point and m ∈ P
3 be the corresponding homogeneous-

prime ideal. So, F3 ∈ m and height(m) = 3. By theorem

2.2, item 2, we have cycle(OP ) = 2d ∈ CH3(P3) for some

integer d. Now consider the maps

CH3(P3)
β
→ F 3K0(P

3).

Write

I = ideal − Sheaf − generated(F d
1 , x2, x3).

Now

cycle

(

O

P

)

= cycle

(

O

I

)

in CH3(P3).

Therefore, looking at the image under beta (Fulton [F,

page 285]), we have
[

O

P

]

=

[

O

I

]

in F 3K0(P
3).

There is a surjective map

R(−2d) ⊕R(−1)2 → (F d
1 , x2, x3) → 0

that induces a surjective map

O(−2d) ⊕O(−1)2 → I → 0.
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The Koszul complex gives (see 4.1):
[

O

I

]

= (O(−2d) − 1)(O(−1) − 1)2

= (η2d − 1)(η − 1)2 mod 2
≡ (ηd − 1)2(η − 1)2 = 0

because (η − 1)4 = 0. Therefore,
[

O

P

]

=

[

O

I

]

is in 2K0(P
3).

Step III: codim = 2: Let x ∈ S3 be a codimension two

point. We think of x = ℘ as a homogeneous prime ideal

of height 2 and let P = IdealSheaf (℘).

Case x3 ∈ ℘: Suppose x3 ∈ ℘. Then ℘ = (F2, x3) The

surjective map

R(−4) ⊕R(−1) → ℘

induces surjective map

O(−4) ⊕O(−1) → P .

The Koszul complex gives (see 4.1):
[

O

P

]

= (1 − η4)(1 − η)
mod 2
≡ (1 − η)5

mod 2
≡ 0

because (1 − η)4 = 0.
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Case x3 /∈ ℘: Write yi = xi/x3. f3 = F3(y0, y1, y2, 1) ∈

℘(x3). By lemma 2.4,

k[y0, y1, y2]

(f3)
is an UFD.

It follows that ℘(x3) = (f3, h) for some h ∈ k[y0, y1, y2].

Let h = H(x0, x1, x2, x3)/x
k
3 for some homogneous H ∈

℘ so that H(x0, x1, x2, 0) 6= 0. Note H is not a mul-

tiple of F, otherwise ℘(x3) = (f3). This is impos-

sible. Therefore F,H is a regular sequence.

Let

I = (F3, H) and I = IdealSheaf (I).

Let degree(H) = d. Then, F3, H induces a surjective

map

O(−8) ⊕O(−d) → I → 0.

The Koszul complex gives (see 4.1):
[

O

I

]

= (1 − η8)(1 − ηd)
mod 2
≡ (1 − η)8(1 − ηd)

mod 2
≡ 0

because (1 − η)4 = 0. Therefore

2 divides

[

O

I

]

.
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We have the exact sequence

0 →
P

I
→

O

I
→

O

P
→ 0

Also note the following:

1.
P

I
= Sheaf (

℘

I
)

2. (I, x3) ⊆
√

ann(℘I ). Proof. We have ℘(x3) = I(x3).

So, (℘I )(x3) = 0. Therefore xr3(
℘
I ) = 0 for some r.

3. It is clear that ℘0 = (F2, x3) is the ONLY height-two

prime ideal that MAY contain (I, x3).

4. There are graded submodules

M0 = 0 ⊆M1 ⊆M2 ⊆ · · · ⊆MN =
℘

I

with
Mi

Mi+1
≡
k[x0, x1, x2, x3]

℘i
where (I, x3) ⊆ ℘i are homogeneous primes for i =

1, . . . , N

5. Let

Pi = IdealSheaf (℘i).
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6. By looking at the corresponding sheafs we have

[

P

I

]

=
[

Sheaf (
℘

I
)
]

= [Sheaf (MN)] =

N
∑

i=1

[

O

Pi

]

.

7. For i = 1, . . . , N if ℘i 6= ℘0 = (F2, x3) then height(℘i) ≥

3.

8. By downward induction or because ℘i = (F2, x3) we

have

2 devides

[

O

Pi

]

for i = 1, . . . , N.

Therefore
[

P

I

]

=

N
∑

i=1

[

O

Pi

]

divisible by 2.

9. The exact sequence

0 →
P

I
→

O

I
→

O

P
→ 0

gives

2 divides

[

O

P

]

=

[

O

I

]

−

[

P

I

]

.

This completes the proof of the theorem.
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Lemma 2.4 Let k0 be a field and k = k0(t) and t is

trancendental over a field k0. Let y0, y1, y2 be variables

and A = k[y0, y1, y2] and

f3 = F3(y0, y1, y2, 1) = (((y2
0 + ty2

1)
2 + t3y4

2)
2 + t7.

Then A/(f3) is an UFD.
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2.2 The Examples

As promised in the introduction, we produce the following

example from the computaitons in Theorem 2.3.

Corollary 2.5 Suppose k = k0(a) where a is trnacen-

dental over a field k0 and let f (x) = x2 + a be the seed

polynomial. Let X3 = Spec(A3) be the Mohan Kumar

affine three fold. Let m be a k−rational maximal ideal

in A3 and x = [A3
m ] ∈ K0(A3).

1. Then x 6= 0.

2. There is a projective module P of rank three such

that x = [P ] − [A3
3] then Cr(P ) = 0 for all r ≥ 1.

Proof. We have the exact sequence

G0(F3 = 0))
ψ
→ K0(P

3) → K0(X3) → 0

Let y ∈ K0(P
3) is given by a rational point. So ψ(y) = x.

Write R = k[x0, x1, x2, x3]. Note that the exact sequence

R(−1)3 → (x0, x1, x2) gives y = (1 − η)3.

Since y is not a multiple of 2, we have x 6= 0.

Now we prove part two. Since x = [P ] − [A3
3] is sup-

ported in codimention three, C1(x) = C2(x) = 0. Also,

by Riemann-Roch, C3(x) = 2[cycle(x)] = 0 because

CH3(A3) = Z/(2).
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By taking a common denominator, the following is a

consequence of the above example 2.5.

Corollary 2.6 There is an affine smooth algebraA over

C with dim(A) = 4 and a projective A−module P with

rank(P ) = 3 such that [P ] − [A3] 6= 0 and Cr(P ) = 0

for all r ≥ 1.

This shows that the theorem of Mohan Kumar and

Murthy ([MKM]) is not valid for higher dimension.
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Following is a consequence of the UFD lemma.

Corollary 2.7 Let k = k0(a) where a is trnacenden-

tal over a field k0 amd let f (x) = x2 + a be the seed

polynomial. We have

CH2(X3) = Z/(4).

So, in this case, the total Chow group is given by

CH(X3) = Z ⊕ Z/(8) ⊕ Z/(4) ⊕ Z/(2)

Proof. We have notations Sn = (Fn = 0) ⊆ P
n and

Xn = P
n \ Sn.

Concider the diagram:

CH0(F2 = 0, x3 = 0) = Z
ψ0

//

β0

²²

CH1(S3) //

β1

²²

CH1(S3 ∩ (x3 6= 0)) //

²²

0

CH1(P2) = Z
ψ1

//

²²
²²

CH2(P3) = Z //

²²
²²

CH2(A3) //

²²
²²

0

CH1(X2) // CH2(X3) // CH2(X3 \X2) // 0

Since k[y0,y1,y2]
(F3(y0,y1,y2,1)

is a UFD, CH1(S3 ∩ (x3 6= 0)) = 0.

(Hence all of the third column is zero, but we do not

need it.) Now it follows that ψ0 is surjective. So, Let

ζ = (F2, x3) denote the generator of CH0(F2 = 0, x3 =

0). Then β1(CH
1(S3)) = β1(ζ)Z = 4Z So, CH2(X3) =

Z/(4).
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Theorem 2.8 Let k = k0(a) where a is trancendental

over a field k0. Let f (x) = x2 + a be the seed polyno-

mial. Let X3 be a Mohan Kumar affine three fold ovet k.

Then the Grothendieck gropupK0(X3) is also completely

determined.
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3 Over the reals R

For our second application, we consider Mohan Kumar

varieties over the field of reals R. Our seed polynomial is

f (x) = x2 + 1 ∈ R[x].

Proposition 3.1 Let f (x) = x2 + 1 ∈ R[x]. Let F1 =

F (x0, x1) = x2
0 + x2

1. Define

Fn(x0, x1, . . . , xn) = F (Fn−1, xn) = F 2
n−1 + x2n

n .

Then Fn is irreducible in R[x0, x1, . . . , xn].

All the computations of Mohan Kumar ([MK1]) goes

through. We rewrite theorem 2.2 in this context.

Theorem 3.2 Let f (x) = x2 + 1 ∈ R[x] be the seed

polynomial. Then,

1. The Mohan Kumar affine variety Xn = Spec(An) =

P
n
R
\ (Fn = 0) is a smooth real affine variety of di-

mension n.

2. We have CH1(Xn) = Z/(2n).

3. Also, CHn(Xn) = Z/(2).

4. Recall ([H]), the cannonical bundle

KPn = ∧nΩPn = O(−n− 1).
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So,

KXn
= −n−1 in P ic(Xn) = CH1(Xn) = Z/(2n).

We compute the Euler class group of the Mohan Ku-

mar affine variety over reals as follows:

Theorem 3.3 Suppose L ∈ Pic(Xn) = Z/(2n) is a

line bundle on Xn. If L + n + 1 is even then

E(Xn, L) = Z

and if L + n + 1 is odd then

E(Xn, L) = Z/(2)

Proof.

1. Notation: For any affine variety X = Spec(A)

over R, let

X(R) = Spec(S−1A) and R(X) = S−1A,

where S is the set all all f ∈ A that does not vanish

at any real point.

2. Xn(R) = P n(R). So they have one connected com-

ponent, which is compact.

3. Pic(Xn) = Z/(2n). In fact,

Pic(Xn(R)) = Z/(2).
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4. The cannonical bundle is K = −(n + 1).

5. We have the follwoing diagram:

0 //EC(L)

o ϕ
²²

//E(Xn, L)

Θ
²²
²²

//E(R(Xn), L) //

²²
²²

0

0 //K(C) //CHn(Xn) //CHn(R(Xn)) // 0

6. SinceCHn(Xn) = Z/(2) andCHn(R(Xn)) = Z/(2)

we have

E(Xn, L) = E(R(Xn), L)

Therefore, if L + n + 1 is even then

E(Xn, L) = E(R(Xn), L) = Z

and if L + n + 1 is odd then

E(Xn, L) = E(R(Xn), L) = Z/(2).
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4 Appendix

4.1 Koszul Complex Lemma

Exercise 4.1 Let X be noetherian scheme and I be

local complete intersection sheaf of ideal of codimen-

sion r. Suppose L1, . . . , Lr are line bundles and

L1 ⊕ L2 ⊕ · · · ⊕ Lr → I

be a surjective map. Then
[

O

I

]

= (1 − [L1])(1 − [L2]) · · · (1 − [Lr]) in K0(X)
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